
•

•

•
•

•

•
•

•

Complexity and reductions recitation 2022

Complexity theory is a field which tries to precisely characterise (i.e. upper and
lower bound) the computational resources which are required to solve certain
problems. 'Computational resources' can mean time, memory (space), and many
other more exotic things. Broadly speaking, all results in complexity theory take
one of two forms:

Upper bound: a proof that problem can be solved using amount of
computational resource.

E.g.: a proof that the problem of deciding whether a graph is
bipartite can be solved in time.
This is shown by exhibiting an algorithm that solves the problem (e.g. BFS).
Can be more exotic than this basic example: for example, the historic results

, , , are all
examples of upper bounds. In order to show that two complexity classes are
equal, you have to show that all the problems which can be solved by one
computational model can also be solved by the other, and vice versa. For
example, involves showing that any problem which can be
solved by a Turing machine in polynomial space can also be solved by a
probabilistic polynomial-time verifier interacting with an unbounded prover.

Lower bound: a proof that problem cannot be solved using amount of
computational resource.

E.g. a proof that SAT cannot be solved in less than exponential time.
Lower bounds are usually much harder than upper bounds, although upper
bounds can already be very nontrivial to prove.
We don't have the aforementioned lower bound, of course—if we did, we'd
have !

In order to prove either lower or upper bounds—in order to prove statements of the
form 'problem can/cannot be solved using amount of computational
resource'—we first have to formally define what a 'problem' is.

X Y Z

G = (V , E)
O(∣V ∣ + ∣E∣)

MIP = NEXP NP ⊆ PCP PSPACE = IP NL = coNL

PSPACE ⊆ IP

X Y Z

P = NP

X Y Z

1

•
•

•

•
•

•

•

•

•

•

•

What is a language?

Also called a decision problem.
Informally, a language (or decision problem) is yes/no problem to be solved.

Examples of questions that can be captured as languages (some easy, some
hard):

'I give you two numbers . Is strictly bigger than ?'
'I give you the algebraic expression for a certain polynomial, e.g.

. Is the polynomial equivalent to 0?'
'I give you the description of a position on a chessboard. Does the
position I gave you have a winning sequence of moves (i.e. a sequence of
moves guaranteed to win) for white?'

Formally, a language is a subset of , where is the set of all
possible bitstrings (of any length, hence the star). We usually denote a language
by , and so we can write .
Which bitstrings are in the subset? We interpret the bitstrings as 'problem
statements', and whether or not the answer to a given 'problem statement' is
YES determines whether or not it's in a given language .

Example: 'I give you two numbers . Is strictly bigger than ?' The
language here would be the set of all bitstrings that encode two integers
and such that . In other words:

We often use the notation to denote the binary encoding of .

What is a Turing machine?

Informally: a Turing machine is an 'algorithm'. It's a piece of code that reads an
input and writes an output (in the context of decision problems, the output

 is typically a single bit). If you could write a Python program to do that
computation which takes in and spits out , then there's a Turing machine
representation of that computation.
Formally: you can look at the 'Description' and 'Formal definition' sections of the
Wikipedia article on the subject, which is actually pretty good. I'm not going to
bother to copy it out here, because, unfortunately, the details are slightly

(x, y) x y

f(x) =
(x + y)(x − y) + (x −2 y)2

{0, 1}∗ {0, 1}∗

L L ⊆ {0, 1}∗

L

(x, y) x y

x

y x > y

L = {⟨x, y⟩ : x > y}.

⟨x⟩ x

x y

y

x y

2

https://en.m.wikipedia.org/wiki/Turing_machine

•

•
•

•

•

•

•

•

•

•

•

tedious.
You should know, however, that people refer to Turing machines as having an
'input tape', a 'work tape' and an 'output tape'. You can imagine all three as
infinite arrays.

The 'input tape' is read only, and on it is written the input .
The 'output tape' is write only and one-way (can't erase from it once you've
written or read symbols that you wrote previously), and the Turing machine
is supposed to write its output on that tape.
The 'work tape' is read/write, and the Turing machine can write any data it
wants to keep track of on the work tape.

You should also know what a 'timestep' is. Basically, the Turing machine has a
'head' that at any given time is hovering over some symbol on one of its tapes. It
does computations by moving the head around and reading and writing symbols
on its tapes; at any given time, it can only read or write to the cell which lies
directly under its head. Every time it wants to move left one cell, move right one
cell, write to the cell that it's hovering over, or change tapes, it needs to expend
one timestep.

(How does it know what it 'wants to' do next? At any given time, the head has
a constant size 'state' that it's in. We assume the head has memorised a
constant sized 'state table' that tells it what action to execute next from its
repertory of legal actions—move left, move right, change tapes, write
something to current cell, change 'states'—depending on what's in the cell
that it's hovering over and depending on its current 'state'.)

The running time of a Turing machine is the number of timesteps it takes to
halt, as a function of the length of its input . (A Turing machine has a well-
defined behaviour on any , and may of course have different behaviour,
including running for different lengths of time, on different inputs.)
The space usage of a Turing machine is the number of cells on its work tape
that it touches during computation, once again as a function of the length of its
input .
We say that a Turing machine decides (for some language) in time and
space if:

for any , the Turing machine on input runs for at most
timesteps, touches at most cells on its work tape, and finally writes (a
symbol meaning) 'ACCEPT' on its output tape;
for any , the Turing machine on input runs for at most
timesteps, touches at most cells on its work tape, and finally writes (a

x

x

x

x

L L t(n)
s(n)

x ∈ L x t(∣x∣)
s(∣x∣)

x ∈/ L x t(∣x∣)
s(∣x∣)

3

•
•

•

•
•

•
•

•

•
•

•
•

•

symbol meaning) 'REJECT' on its output tape.

What are P and NP?

All complexity classes are sets of languages.
 is the set of languages that can be decided by a Turing machine in time at

most for some constant .
One definition of is as the set of languages that can be verified by a Turing
machine in time at most for some constant . Formally: is in if there
exists a polynomial-time computable relation and a constant such that

The string above is called the witness.
Examples of problems in :

The quintessential example, SAT.
Input: a Boolean formula (an expression containing Boolean variables
along with AND (), OR (), NOT () symbols, e.g.

where and are bits).
Question to decide: is the formula satisfiable? That is, is there an
assignment to all the variables in the formula such that the formula
evaluates to 1? (The formula above is satisfiable: set .)
Witness: a satisfying assignment.
Verification algorithm: plug in the satisfying assignment and check that
the formula evaluates to 1 (evaluating a Boolean formula can be done in
polynomial time in the size of the formula).

3SAT: a special case of SAT.
Input: a Boolean formula which is an OR of AND clauses, such that each
AND clause contains at most three variables. For example:

Question to decide: is the formula satisfiable?

P

knk k

NP

knk k L NP

V k

x ∈ L ⟺ ∃y ∈ {0, 1} , s.t. V (x, y) =k∣x∣k 1;

x ∈/ L ⟺ ∀y ∈ {0, 1} , V (x, y) =k∣x∣k 0.

y

NP

∧ ∨ ¬

(x or y) and ((not x) and y)

x y

x = 0, y = 1

(x or (not x) or x) and (x or (not x) or (not x))1 2 3 2 3 4

4

•
•

•
•
•

•
•

•

•

•

•

•

•

Witness: a satisfying assignment.
Verification algorithm: plug in the satisfying assignment and check that
the formula evaluates to 1.

3-colouring.
Input: a graph .
Question to decide: is the graph 3-colourable? That is, does there exist a
colouring of the vertices which uses no more than 3 distinct colours such
that no two endpoints of an edge share the same colour?
Witness: a valid 3-colouring for the graph.
Verification algorithm: loop through all edges in the graph and check that

 assigns different colours to all of them.
All of these problems (SAT, 3SAT, 3COL) are NP-complete.

Karp reductions and NP-completeness

Intuitively, some problems in are harder than others. (For example,
contains , but we don't expect problems in to be 'as hard as' some other
problems in , assuming .)
The notion of -completeness formally captures the idea of 'the hardest
problems in '. A problem is -complete only if it is 'as hard as any other
problem in '.
We formalise this intuition using the notion of a reduction. If problem can be
reduced to problem , then we write , and we may say in English that 'if
you can solve , then you can also solve '.
In complexity theory, we like to use a relatively weak kind of reduction called a
Karp reduction. (We like Karp reductions in complexity because they preserve
distinctions between classes like and . Problems in cannot, in
general, be Karp reduced to problems in , but and would be
considered equal under the stronger sorts of reductions which are usually found
in cryptography.)
A Karp reduction from language to language is a function such that:

G = (V , E)

C

C

NP NP

P P

NP P = NP

NP

NP NP

NP

A

B A ≤ B

B A

NP coNP NP

coNP NP coNP

A B f

x ∈ A ⟹ f(x) ∈ B;

5

•

•

•

•

•

•

A language is -complete only if, for any other language ,
 can be Karp reduced to , and the function involved in the Karp reduction

can be computed in polynomial time (in the length of its input).
In particular, this means that, if someone finds a polynomial time algorithm for
any NP-complete language, then every language in NP has a polynomial-time
algorithm (why?), and so .
Note that a Karp reduction is only allowed to look at the 'problem statement' or
input. If you have an algorithm that decides and you're trying to decide
whether some input is in , and a Karp reduction exists from to , then
you'd literally just look at the input , compute on it, and run your algorithm
for on .
We could imagine a more general kind of reduction that is not only allowed to
transform the input, but is also allowed to look at the output of the algorithm for

 on the input and do some computation on that before outputting its

decision on . This sort of reduction is called a Turing reduction.

Turing reductions

A Turing reduction from problem to problem works as follows: you are
trying to decide whether , and you are allowed access to an oracle which
tells you, for any , whether . If you can, using your oracle, successfully
decide , then there is a Turing reduction from to .
Note that Karp reductions are a special case of Turing reductions. If there's a
function such that

x ∈/ A ⟹ f(x) ∈/ B.

L ∈ NP NP L ∈′ NP

L′ L f

x

P = NP

B

x A A B

x f

B f(x)

B f(x)

x ∈
?

A

A B

x ∈ A

y y ∈ B

A A B

f

x ∈ A ⟹ f(x) ∈ B;

6

•

•
•

•

•

•

•

and you are able to compute , then you (the machine which is trying to decide
 on input) can use your oracle as follows: compute , ask the

oracle about the input , and output whatever the oracle outputs.
In cryptography, we often consider Turing reductions. In fact, we usually
consider even more general reductions than Turing reductions: in a Turing
reduction, we assume that the oracle is right all the time, but in cryptography,
the algorithm we're reducing to doesn't need to be right all the time.

Reductions in cryptography

The vast majority of (classical) cryptography is built on assumptions.
This is because we can't prove unconditionally that, e.g., secure encryption
exists without proving first that .
So we just assume that (in fact, we usually assume somewhat stronger
things, e.g. 'one way functions exist'), and from such assumptions we can build
all of cryptography (we can prove that secure encryption exists, that secure
digital signatures exist, that secure zero-knowledge proofs exist, etc.).
How do we do that? In order to show that assumption A (e.g. 'unpickable Chubb
locks exist') implies assumption B (e.g. 'my bullion safe is secure'), we show the
contrapositive: if not B, then not A. If our safe is not secure, i.e. if there exists a
probabilistic polynomial-time adversary that can break into our safe, then
there exists a probabilistic polynomial-time adversary that can pick a Chubb
lock. (Note, in particular, that this requires us to build our safe in such a way that
the only efficient means of entry is through picking a Chubb lock.)
In other words, we want a reduction from to : we want to reduce breaking
the thing we assumed is impossible to break to breaking the thing we want to
prove is impossible to break. We want to show , i.e., that picking the
Chubb lock (assumed intractable) is actually easier than breaking into our safe
(which we want to be intractable), or that breaking a PRG (assumed intractable)
is actually easier than breaking our encryption scheme (which we want to be
intractable).
'Breaking' some assumption, in a cryptographic context, usually means winning
some security game with non-negligible probability / non-negligible advantage
(which one depends on the game).

x ∈/ A ⟹ f(x) ∈/ B,

f

A x B f(x) B

y = f(x) B

B

P = NP

P = NP

B

A

A B

A ≤ B

E

7

•

•

•
•

•

•
•

•

•

•
•

•

A simple example of a cryptographic reduction

Let be a secure PRG. Show that the PRG
 is a secure PRG, where

We want to show that any adversary for can be used to construct an
adversary for . So, we firstly assume that we have a generic adversary for

, and then we construct one () for which uses to break .
The key here is to:

Write down everything that expects to receive from its challenger:
A sample , , so that

Write down what (= us!) receives from its challenger:
A sample , , so that

Figure out how can use what it gets from its challenger, and whatever
public knowledge is available to it, in order to 'simulate' 's challenger.

 can output , for a that it chooses uniformly at random from
.

Notice that, in both cases of , .
 outputs whatever outputs, and if guesses correctly, then so does
. Therefore, has the same advantage as .

Note that, in this very simple case, we actually did a 'Karp reduction'. There
are no languages here, and the reduction was probabilistic (we used
randomness to compute the input we gave to), so it's not a real Karp
reduction—but, morally speaking, we simply identified a single
transformation which would both transform a yes-input of into a yes-input
for , and transform a no-input of into a no-input for . (It needs to be a
single transformation because we of course don't know which is which a

G : {0, 1} →n {0, 1}2n G :′

{0, 1} →n+1 {0, 1}2n+1

G (s∥b) :=′
G(s)∥b.

G′

G B

G′ A G B G

B

dα α ∈ {0, 1}

d =α {G(s)∥b

r2n+1
α = 0
α = 1.

A

cα α ∈ {0, 1}

c =α {G(s)
r2n

α = 0
α = 1.

A

B

A c ∥bα b

{0, 1}
α c ∥b =α dα

A B B

A A B

B

A

B A B

8

•

•

•

•

priori.) Then we (as) outputted whatever output.
In more sophisticated analyses we will need to use 'Turing reductions'
(quote marks mean: don't take that literally!), where we as not only
transform the input that we receive but also do computations on the output
that returns to us.

Bonus problem

Assume that is a secure PRG. Construct a PRG
 which is secure, but which becomes insecure if the

parity of its seed is always chosen to be zero.
Step 1: show that defined as

 is insecure if the last bit of its seed is always chosen to be 0. (Easy!)
Step 2: how can we leverage step 1? Hint: use the fact that any bijective
function maps the uniform distribution to itself.

A B

A

B

G : {0, 1} →n {0, 1}2n G :′

{0, 1} →n+1 {0, 1}2n+1

G :′ {0, 1} →n+1 {0, 1}2n+1 G (s∥b) =′

G(s)∥b

9

